
CIS 422/522 Fall 2011! 1!

Quality Assurance: 
Building Quality In!

The role of “testing”*!
Active reviews!

*From Prof. Michal Young

CIS 422/522 Fall 2011! 2!

What!

•  Narrow view:!
–  Testing is executing a program and comparing

actual results to expected results!
•  Wider view: !

–  “Testing” is shorthand for a variety of activities:
anything we can do to check for defects!

–  Dynamic program testing is the most common
activity when the artifact is program code!

–  Also, reviews, analysis of models, automated
checks; we usually need several!

CIS 422/522 Fall 2011! 3!

Why Test!

•  Stupid question?!
•  But we need to be clear about goals before we can make

reasoned choices regarding the other questions, who,
what, when, and how!

•  In general: testing provides the feedback in our
“feedback control loop”!

•  We test to avoid costs!
–  Costs during software development!
–  Cost of defects in the final product!
–  Implies cost/benefit is important!

CIS 422/522 Fall 2011! 4!

Real meaning of “control”!

•  What does “control” really mean?!
•  Can we really get everything under control

then run on autopilot?!
•  Rather control requires continuous feedback

loop!
1.  Define ideal!
2.  Make a step!
3.  Measure deviation from idea!
4.  Correct direction or redefine ideal and  

go back to 2!

CIS 422/522 Fall 2011! 5!

Feedback in the Product Development
Cycle!

Business Goals
 Hardware
 Software
 Marketing
 other

Product Planning
 Economic Evaluation
 Development Strategy
 Marketing Strategy
 Prioritization

Requirements
 Capabilities
 Qualities
 Reusability

Architecture
 Tradeoffs of
 quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Feedback control: goal is to keep system
capabilities and stakeholder goals
in synch!

CIS 422/522 Fall 2011! 6!

Costs: Importance of Early Defect Detection!

2. The later that software errors are!
 detected, the more costly they are!

 to correct!

1. The majority of software errors!
 are introduced early in software!

 development!

1

2

5

10

20

50

100

design unit test,
 integration operation

requirements code
 debug

acceptance initial
 test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional

analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

$1 error
$100 error

CIS 422/522 Fall 2011! 7!

Errors, Detection, and Repairs!

•  Basic observation: !
–  Cost of a defect grows quickly with time between

making an error and fixing it!
•  Step function as defects cross scope walls: From

programmer to sub-team, from close colleagues to larger
team, from module to system, from developers to
independent testers and from development to production!

•  “Early” errors are the most costly!
•  Misunderstanding of requirements, architecture that does

not support a needed change, ... !

CIS 422/522 Fall 2011! 8!

When!

•  As early as possible!
–  Reduce the gap between making an error and

fixing it!
•  Ideally to “immediately” ... which we call “prevention” or

“syntactic checking”!
•  E.g., error detection/correction in Eclipse, other

programming environments!
•  Throughout development!

–  People make mistakes in every activity, so every
work product should be tested as soon as possible!

–  But should continue: different activities better
detect different kinds of errors!

CIS 422/522 Fall 2011! 9!

Choosing What!

•  For every work product, we ask: How can I
find defects as early as possible?!
–  Ex: How can I find defects in software architecture

before we’ve designed all the modules? How can
I find defects in my module code before it’s
integrated into the system?!

•  Divide and conquer!
–  What properties can be checked automatically?!
–  What properties can be (effectively) tested

dynamically?!
–  How can I make reviews cost-effective?!

CIS 422/522 Fall 2011! 10!

Verification and Validation:  
Divide and Conquer!

•  Validation vs. Verification!
–  Are we building what the stakeholder want? vs.

Are we building according to spec? !
–  Crossing from judgment to precise, checkable

correctness property. Verification is at least partly
automatable, validation is not.!

•  Correctness is a relation between spec and
implementation!
–  To make a property verifiable (testable,

checkable, ...) we must capture the property in a
spec!
!

CIS 422/522 Fall 2011! 11!

Divide and Conquer: Usability!

•  Real requirement: !
•  Not “The product should be easy to use”!
•  Rather: the product must be usable. Users with

characteristics XXX should learn to use it effectively
within 30 minutes, and should thereafter complete task T
within S seconds with error rate E.!

•  Hard and expensive (but important) to test. We probably
can’t test it after every trivial change to the product. !

•  Divide and conquer: !
•  Validate the user interface design. !
•  Verify the user interface implementation: Is it consistent

with the design? Does it violate any of the (precisely
stated) requirements?!

CIS 422/522 Fall 2011! 12!

Who!

•  Cost of a defect rises dramatically at
architectural and sub-team boundaries!

•  It’s cheap for me to fix the bug I just created in my
module. It’s much, much more expensive to find,
understand, and fix a bug in a module made by a
teammate who is sleeping 3000 miles away.!

•  Implies local testing first!
=> Test cases are part of good module interface
designs!
=> Module tests should be thorough and completed
before a module (or revision) becomes part of the
baseline used by others!

CIS 422/522 Fall 2011! 13!

The Long When!

•  Test execution is just one part of testing!
•  And it needs to be a very cheap, automated part, because

we should re-test the program over and over as it evolves!
•  Test design can often be done much earlier!

•  Can begin building tests based on use cases and other
requirements!

•  Part of a good system design is devising acceptance test
cases!

•  Test design is also a test of specifications!
•  Is this specification precise, or ambiguous? Can I effectively

check whether an implementation satisfies it?!
•  What does it say about the SRS if I cannot write system test

cases from the requirements? !

CIS 422/522 Fall 2011! 14!

How (from why, who, when, what)!

•  Reviews: evaluation by people!
–  Situations requiring judgment!
–  Where automation is expensive or impractical!

•  Execution testing!
–  Where executable code exists!
–  Black box: Test design is part of designing good

specifications!
–  White (or glass) box: Test design from program design!

•  Allows more effective coverage of code!
–  Executing every statement or branch does not guarantee good

tests, but omitting a statement is a bad smell.!
•  Many different approaches !

•  Less common!
–  Formal models and proofs!
–  Executable models, etc.!

CIS 422/522 Fall 2011! 15!

Testing Perspective!

•  Execution testing is the most common
approach to establishing system quality!

•  What can be established by execution testing
and what cannot?!
–  Functional correctness?!
–  Quality requirements?!
–  What the stakeholders want?!

•  Implications!

CIS 422/522 Fall 2011! 16!

Summary: Quality is Cumulative!

•  Are the requirements valid?!
•  Complete? Consistent? Implementable?!
•  Testable?!

•  Does the design satisfy requirements?!
•  Are all functional capabilities included?!
•  Are qualities addressed (performance,

maintainability, usability, etc.?!

•  Do the modules work together to implement all
the functionality?!

•  Are likely changes encapsulated?!
•  Is every module well defined!

•  Implement the required functionality?!
•  Race conditions? Memory leaks? Buffer

overflow?!

Requirements
Analysis

Architectural
Design

Detailed
Design

Coding

CIS 422/522 Fall 2011! 17!

QA in Your Projects!

•  How do you plan to establish quality? !
–  Capture QA planning in assembla pages!

•  Reviews (describe one)!
–  What will be reviewed?!
–  What kinds of reviews will be conducted and by whom?!
–  What are the results!

•  Test plans!
–  What is the testing strategy? (see CIS422W12_Team3)!
–  How will tests be created and by whom?!

•  Module tests, system tests, etc.!
–  Which testing strategies will be used and why?!

•  Black box, white box, coverage, etc.!
•  Read Chapter 13 of text!!

